
SysTaint: assisting reversing of
malicious network communications

Master Thesis - Gabriele Viglianisi
Matr. no. 836130

Supervisor: Prof. Stefano Zanero
Co-supervisor: Dr. Andrea Continella

Problem: Malware proliferation

● Malware became profitable for criminals
● 63.4 million new samples in Q4 2017*
● It is necessary to employ automated methods to analyze malware

* from McAfee Threat Report March 2018

Sandbox: analyzing known and unknown
malware automatically

● Checks the sample against a list of known signatures
● Runs the sample in a controlled environment, logging what it does
● Analyzes the logged information for signs of malicious activities

(Nowadays, most antivirus software employ this approach)

Studying how malware works

● Necessary to
○ develop countermeasures
○ uncover behaviors the sample did not show during the analysis
○ understand how a malware communicates with malicious actors

● Unfortunately mostly a manual process

How to study a malware

● Obtain and read the disassembled code of the malware
● Extract information on the behavior of a sample’s code observing it

while it’s executed
○ Running the sample in a debugger
○ Running the sample with added instrumentation

Challenge: Network communications

● Malware samples communicate with malicious actors
● The analysis depends on external servers, on their response and timing
● Debugging and instrumentation techniques may interrupt network

communication

Record-replay solutions can help

● Record the activities we want to study
● Replay it deterministically, extracting the information we are

interested in

We leverage PANDA [1] to record the execution of a sample, then extract
rich information on its inner workings.

[1] https://github.com/panda-re/panda

https://github.com/panda-re/panda

SysTaint: Approach

We can semi-automatically extract, from the recorded execution, data that allows the
analyst to quickly answer the following questions:

● Which part of the sample’s code is responsible for a given behavior?
● How does the sample use the data it acquires?
● What data is the sample exchanging over the network and how is it processed?

Comparison with existing technologies
Commonly used solutions:

● Sandbox software: only extract information on the interactions between the sample and the

environment.

● Debuggers: difficult to use. Require re-executing the malware (and repeating the network

communications) multiple times.

Research solutions:

● Dispatcher: specific to protocol reverse engineering on malware. We employ similar techniques,

but use record-replay and offer a generic and practical analysis tool

● QIRA: is a generic record-replay-based reverse engineering tool. It only targets Linux processes

and short executions.

Integration with existing sandbox

Recording the execution of the sample does not impact its execution, it is thus possible to

● automatically record the malware being analyzed by a sandbox software

● take advantage of the instrumentation that the sandbox software already uses to detect the

use of known system libraries

● enrich its reports, so that the analyst can use SysTaint to inspect the internal functions of

the malware related to some given interactions reported by the sandbox software

The integration with existing sandbox software is optional, so that it is possible to use SysTaint to

study samples that the sandbox software is not able to analyze.

SysTaint: approach

By applying these techniques

● Process memory map extraction

● Cryptographic functions

detection

● System and function call tracking

● Data-flow analysis

We can easily extract:

● The processes of interest

● The malware code

● The data the sample exchanges with the

system and the network, its provenance

or usage

● The unencrypted contents of such data

● The functions that transforms or use the

data of interest and their context

SysTaint: approach

Sample execution
and recording

Interactive data
exploration

semi-automated data extraction
from the recording

A recording of the
sample is obtained

We run analyses extracting
useful data from the recording

The analyst queries the
collected data and
gradually builds an
understanding of the
malware

1 2 3

Automated data extraction

Pre-analysis

Process
information
extraction

Choice of
processes of
interest

Encryption
function
detection

Analysis

Data collection and
taint analysis

Techniques: VMI

Consists in extracting information on the processes running on the controlled environment, by observing

it from the outside. It allows:

● identifying the memory portions holding the malware code

● obtaining the address of functions in loaded libraries

Techniques: cryptographic functions detection

● Performed through heuristics
● In some cases allows the analyst to immediately locate the encryption

functions
○ Extracting the unencrypted data
○ Tracking their output

Techniques: Taint Analysis

● Used to track how some specific data is transformed and used inside a program
● Requires heavyweight instrumentation
● To keep the memory usage low, we track the data the process obtains from the

system (e.g., files, the registry, and the network)
● We use the information obtained via taint analysis to

○ find the provenance of the data the sample writes back into the system,
○ the data processed by encryption function
○ the functions processing data with a given provenance.

Techniques: Data collection and taint Analysis

We gather data about the internal malware functions in the following manner:

● On each thread, monitor periods of time (events) when the sample is performing a system

call or an encryption operation. All data read/written by that thread during that time is

tracked via taint analysis and attributed to that event.

● Functions processing tracked data are logged and their input is annotated with the event of

provenance

Taint analysis example

id description taint changes taint labels read

37 syscall(NtReadFile) reads file contents into buffer A taint[A] <- 37 none

38 call(memcpy) copies A into B taint[B] <- taint[A] 37

39 call(encryptionFn) encrypts B taint[B] <- 39 37

40 syscall(NtSetValueKey) writes B into the Windows registry 39

37

39

40

38 The sample is writing to the
registry (40), the contents it has
read from a file (37), then
encrypted (38)

A more complex example

37

40

41

38id description

37 syscall(NtReadFile) reads file contents into buffer A

38 call(encodingFn) transforms A, puts result in B

39 call(obfuscationFn) of B

40 call(encryptionFn) encrypts B

41 syscall(NtSetValueKey) writes B into the Windows registry

39

We can locate 38 and 39 by:
● Looking for functions depending on 37
● Looking for functions reading or writing B
● Looking for functions producing the input to 40

Output of taint analysis

Testing & Evaluation

We tested SysTaint to study four banking trojan samples, respectively Zeus, Citadel,
Dridex, Emotet

For each sample, we were able to:

● Find the low level interactions sending specific data on the network
● Find how this data was encrypted, its unencrypted contents and their

provenance

● Reads report from file

● Decrypts it via RC4

● De-obfuscates it (XOR)

● Unencrypted data

● Obfuscates it (XOR)

● Encrypts it (RC4)

● Sends it through the network

Example: Zeus

● Reads system info (registry and whoami)

● Unencrypted data

● Encrypts it (custom)

● Encrypts it (TLS)

● Sends it through the network

Example: Dridex

in
te

ra
ct

iv
e

ex
pl

or
at

io
n

Conclusions

We believe SysTaint can be useful, easy to deploy with existing sandbox
solutions, and can speed up the process of studying malware samples, in
particular the ones whose behavior depends on network communications
with servers outside our control.

Grazie! Domande?

Performances

Main challenges

● Working from a hypervisor’s point of view
● Lack of ground truth when working with malware

Future developments

● Per-instruction resolution
● Full dynamic slicing
● Incorporate knowledge of known Windows APIs

Limitations

● Programs employing virtual machines
● We can’t track the output of all internal functions
● Per-function resolution
● Vulnerable to some evasion techniques

Encryption functions detection: details

● Statistics are collected for the first 5 calls to each function
● Each call is evaluated by an heuristic (majority wins)
● Heuristic:

○ If it handles high-entropy data
○ Has a minimum size
○ Most of time is spent on loops
○ Depth of the call tree from there is shallow

● “Promotion” mechanism to find calls to higher level encryption
functions from primitives.

